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ABSTRACT

This paper describes a new agent-based routing system
(ARS) for a datagram network. The ARS supports
QoS routing, resource reservation, and admission con-
trol functions by using ant-like agents. The ARS works
under the condition that every node in a network sup-
ports the weighted fair queueing algorithm and that
network users require two service class deliveries: data-
gram and real-time flow. The ARS efficiently allocates
network resources according to user requests. The sim-~
ulation results show that more than 70% of network
resources are effectively utilized and less than 10% of
the resources are unnecessarily reserved when the load
of user requests exceeds the network’s capacity.

1 Introduction

This paper describes a new agent-based routing sys-
tem for a datagram network, called ARS, which sup-
ports quality-of-service (QoS) routing, resource reser-
vation, and admission control functions by using ant-
like agents. The objective of the ARS is to achieve
high resource utilization and to reduce user contention
for network resources.

The ARS network supports both best-effort packets
and packets with QoS guarantees; for this purpose, all
transmission capacities in a network are split between
the two classes according to the weighted fair queueing
(WFQ) algorithm [1, 2]. The ARS supports two QoS
commitments: bandwidth and hop-count. Bandwidth
and hop-count are useful in that if a flow source is
characterized by a leaky bucket [3, 4], the bound on
the end-to-end delay and the delay jitter of the flow
can be determined by the allocated bandwidth and the
hop-count of the route [5, 6]. As a result, delay and
jitter constraints can be mapped to bandwidth and
hop-count constraints.

Recent QoS-based routing algorithms can be clas-
sified as message-passing based routing algorithms.
These algorithms find a feasible path that satisfies a
set of QoS constraints based on the “messages” ex-
changed among nodes [7]. This class of routing algo-
rithms has a tendency to temporarily overuse band-
width and processing resources on a network. For
example, once the path computation with a Dijkstra
or (distributed) Bellman-Ford algorithm (8] begins, it
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continues until feasible paths are obtained if they exist.
In addition, link-state routing algorithms [9]-[11] peri-
odically broadcast (or multicast) messages (link state
advertisements) onto a network.

The ARS, on the other hand, is classified as a mo-
bile agent-based routing algorithm [12]-{14]. In this
system, a colony of artificial ants cooperatively discov-
ers feasible paths. AntNet [15] is the first datagram
routing algorithm of this class. The ARS supports
an extended version of the AntNet, which has band-
width and hop-count constrained routing capabilities.
It is important that the ARS’s utilization of band-
width and processing resource does not sharply fluc-
tuate, since ants are injected at regular intervals into
a network and the processing time of each ant is short.
Furthermore, the ARS can support the global admis-
sion control mechanism by making each ant gather
resource state information on its way. This mecha-
nism efficiently controls network-wide resource usage;
the efficiency arises from the fact that the ARS always
maintains the latest resource states of the shortest de-
lay paths. This is because most ants select the shortest
delay paths based on the positive feedback mechanism,
so that the information about the paths is frequently
updated by these ants.

The rest of the paper is organized as follows. Sec-
tion 2 describes the operation environment and re-
source reservation mechanism of the ARS. Section 3
discusses the extended version of the AntNet. Section
4 describes the admission control mechanism. Section
5 details the efficiency of the ARS. Finally, Section 6
concludes the paper.

2 Operation Environment and Resource
Reservation

The ARS works in a datagram network under two con-
ditions. First, network users require two service class
deliveries: datagram and real-time flow. A datagram
is a delay-insensitive packet, while a real-time flow is
a sequence of delay-sensitive packets. Second, every
node in the network supports the WFQ algorithm. The
WFQ algorithm evenly divides every link transmission
capacity in a network into NV pieces. One piece is per-
manently allocated to datagrams, and another piece is
permanently allocated to agents, while the other pieces
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Figure 1: Delivery of a real-time flow between two
hosts.

(NN — 2 pieces) are allocated to each real-time flow on
demand by the ARS. Hereafter, we call each of the
N — 2 pieces for real-time flows a "resource”.

Fig. 1 illustrates a delivery of a real-time flow be-
tween two hosts. Every time a user requests a deliv-
ery of a real-time flow from a host, the user indicates
the required bandwidth (m units of resources) between
the two hosts. After the ARS decides to accept the re-
quest, an agent F,g, reserves resources and sets up a
path with a bandwidth greater than m units between
the two hosts. The ARS prepares a priori the route
information of a path that satisfies the user request.
Note that an established path is uni-directional. An
agent B, is only used to notify the establishment of a
successful path. Packets are routed by source routing,
and the last packet piggybacks the notification of com-
pletion. Finally, an agent B,.; releases all resources
allocated for this user request. All agents and packets
in Fig. 1 use the same path. If an agent F,g, arrives
at a node that does not have enough resources to sat-
isfy the user request, then it creates an agent B, and
dies. B,s, releases all resources that F,,, reserved.

3 QoS Routing of the ARS

The ARS uses an extended version of the AntNet to
find feasible paths. A path is “feasible” when all nec-
essary resources for setting up the path are now avail-
able. In this section, we first give an overview of the
basic mechanism of the original AntNet algorithm and
its characteristics, and then introduce the extended
AntNet. For a more detailed description of the AntNet,
see [15].

3.1 Basic AntNet Mechanism

To easily understand the AntNet, it may be helpful to
learn the behavior of a real ant colony, since AntNet
is an application of such behavior to datagram rout-
ing. A real ant colony is able to select the shortest

Routing probabilities (pheromone)
of shortest path "increase".

"More" ants come to select
shortest path.

Figure 2: Positive feedback mechanism forms a contin-
uous circle, so shortest path is strongly marked with
large probabilities (a great amount of pheromones).

path between its nest and a food source [16] because
of the ants’ trail-laying/trail-following behavior: indi-
vidual ants emit a pheromone on the ground that at-
tracts other ants. At first, each ant randomly selects
a path between the nest and food. However, since a
pheromone is quickly deposited on the shortest path,
the number of ants that select the shortest path grad-
ually increases. Finally, almost all ants select it due to
the positive feedback (Fig. 2).

Analogously, each node s (nest) in the AntNet net-
work periodically generates an artificial ant (a forward
ant F,;) with a randomly selected destination node d
(food) to observe the trip time from node s to destina-
tion node d. After F,,; arrives at destination node d,
it creates another artificial ant (a backward ant Bgy:)
and dies. By, returns to node s to report the trip time
of Fynt. Bant takes the same path as Fi,p: in the oppo-
site direction. Instead of a pheromone, every node s in
the AntNet network maintains a set of routing prob-
abilities {Pj, |n € N,;,d € S — {s}}, where S and N,
denote the set of nodes in the network and the set of
neighboring nodes of node s, respectively. Pj, repre-
sents a routing probability that node s sends packets
and forward ants to the neighboring node n when their
destination node is d; therefore,

Y P;,=1,VdeS~{s}

neEN,

Just as real ants deposit pheromones, every time a for-
ward ant whose destination node is d goes over a link
from node s to node n, the corresponding routing prob-
ability P; , is increased when a backward ant created
by the forward ant returns to node s. The amount of
increase depends on the forward ant’s trip time from
node s to node d. A shorter trip time results in a larger
probability increase. Since large routing probabilities
attract forward ants (just as more pheromones attract
real ants), the AntNet is able to find the shortest delay
path based on the same mechanism as that of the real
ant colony (Fig. 2).

3.2 AntNet Extensions for Constraint-based
Routing

We now describe the extended AntNet that can find
feasible paths that minimize delay under a set of QoS
constraints. The ARS supports two QoS constraints:
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bandwidth and hop-count. The amount of bandwidth
is determined at the arrival time of each user request;
in contrast, we suppose that the maximum hop-count
(Hmaz) is determined a priori for all user requests.

The AntNet can be easily extended to support
bandwidth and hop-count constrained routing capabil-
ities. These capabilities can be obtained by simply re-
stricting the actions of all forward ants. By making for-
ward ants use links whose residual (unused) resources
are more than a certain number of units, the extended
AntNet becomes a bandwidth constrained routing al-
gorithm. If the forward ants die when their hop-counts
exceed H,,.., then the extended AntNet becomes a
hop-count constrained routing algorithm.

The AntNet with bandwidth-constrained routing
capability presents a problem where under heavy user
request most of the forward ants have to stay in a few
lightly utilized links. In this situation, feasible paths
will never be discovered and they just waste transmis-
sion bandwidth. We introduced two more rules for
overcoming this problem. First, if a forward ant cannot
select a next hop node since all outgoing links do not
satisfy the bandwidth requirement, then the forward
ant dies. Second, if a forward ant has visited the same
node at least twice, then the forward ant dies. These
two rules prevents many forward ants from staying on
a network for a long time.

4 Global Admission Control

4.1 Objective

The objective of the ARS is to efficiently allocate net-
work resources according to user requests. We use the
term eflicient to indicate that most of the reserved re-
sources should be used to transmit real-time flows. It
is important that at any time, every resource has one
of three states: “used,” “unused,” or “reserved-but-
unused,” where the state “reserved-but-unused” de-
notes that a resource of this state is reserved but the
path which will be established by using this resource
has not been established yet. Under heavy user re-
quests, the percentage of “reserved-but-unused” states
becomes dominant, since attempts at setting up paths
frequently fail. The ARS, however, can work well un-
der this environment due to the efficient admission con-
trol mechanism.

4.2 Description of Admission Control

The basic idea for achieving efficient admission con-
trol is as follows. Since many forward and backward
ants move around on a network to search for feasi-
ble paths, we make these ants carry information on
resources of nodes that they have visited. This infor-
mation is then used to decide whether feasible paths
maintained in each node are currently feasible or not.
Hereafter, we call a feasible path maintained in each
node an “f-path”.
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We are now ready to describe the ARS’s admis-
sion control. Every node in a network maintains one
path cache. A path cache includes f-paths for all com-
binations of destination nodes and bandwidth require-
ments, and a set of states of all links that make up these
f-paths. Let P(s,d,m) denote an f-path from node s
to node d with a bandwidth greater than m units, and
let s(n1,n2,m) denote a state that indicates whether
link (ni,n2) (a link from node n; to node no) has at
least m units of unused resources or not. Then, the
path cache in node s includes

P(s,d,m), {s(n1,ne,m)|(n1,n2) € P(s,d, m)},
vde S - {s}, Vme M,

where S and M are the set of nodes in the network
and the set of bandwidth requirements supported by
the ARS, respectively. The following describes the ad-
mission control mechanism.

1. When a backward agent (which corresponds to one
of three kinds of agents: Bgni, Brsy, and Byre)
leaves node k, it carries states of all node k’s out-
going links. A state of a link carried by an agent is
represented by a tuple (k,[,r), where [ is a neigh-
boring node of node k and r is the number of unused
resources of link (k, ).

2. When a backward agent arrives at node f, by using
each link state (k,[,r) carried by the agent, it up-
dates link states in the path cache as follows. For
alld € S — {f} and m € M, if (k,l) € P(f,d, m),
then the corresponding link state s(k,l,m) is up-
dated as

1, ifr>m,
s(k,l,m) = { 0, otherwise.

3. When a backward ant Bg,:, which returns from
node d to node s after discovering a feasible path
with a bandwidth greater than m units, reaches its
destination node s, it replaces f-path P(s,d,m) in
the path cache with this newly discovered feasible
path; it then updates link states in the path cache
as described in 2.

4. For each combination of a destination node and a
bandwidth requirement, each node has one user
request queue, so that one node has a total of
(IS] = 1) x |M] user request queues. Each arriv-
ing user request is assigned to one of these queues
according to the destination node and the required
bandwidth of the request. Periodically, the ARS
tries to set up a path for one user request. The
ARS selects a request whose corresponding f-path
is “available” from all requests waiting at the head
of these user request queues in a round robin man-
ner. An f-path P(s,d,m) is “available,” only if
s(n1,ng,m) = 1 for all links (ny,ns) € P(s,d, m);



otherwise it is “unavailable”. If the path establish-
ment for a request succeeds, the request is removed
from a queue; otherwise, it stays in a queue until
the path establishment for the request succeeds.

A modification of the link states described in 2.
sometimes makes a state of an f-path unavailable or
makes a state of an f-path available again. We call the
latter case “mosaic discovery” of a feasible path, and
distinguish it from “exploratory discovery”. In “ex-
ploratory discovery,” a new feasible path is discovered
as a result of a forward ant F,,;’s exploration, which is
then reported by a backward ant B,,; as described in
3. Mosaic discovery may be effective when the number
of consumable resources rapidly changes.

The merits of this admission control mechanism
are summarized as follows. (1) Immediate path es-
tablishment can be achieved since f-paths are always
prepared. (2) An “available” f-path is very reliable,
since the contents of the path cache are constantly up-

dated. It is worth noting that a path along which state .

information is gathered by a backward agent is not ran-
domly selected. For example, a backward agent B,,,
{Bret) carries the states of a path whose resources have
just been reserved (released), while most of the back-
ward ants (Bgn:s) carry the states of shortest-delay
paths. As a result, the states of these important paths
are frequently updated, but the states of the other
paths (useless information) are scarcely reported.

5 ARS Efficiency

5.1 Simulation Conditions

This section demonstrates the efficiency of the ARS
by computer simulations. We first explain the simu-
lation conditions. Fig. 3 shows the network topology.
All links in the network are bi-directional and fully du-
plex, and have the same transmission bandwidth (1.5M
bits/sec) and resources (N —2 = 10). The capacities of
all output buffers are infinite, so packets and agents are
never lost. The maximum hop-count (H,,qz) is set to
6. The ARS can support two bandwidth requirements:
one unit and three units (i.e., M = {1, 3}), so that one
extended AntNet algorithm is executed for each band-
width requirement. The processing time of each agent
is 2 msec, and the generation interval of forward ants
is 1 sec. The sizes for Fypnt, Bant, Frsv, Brsv, and Bre
are (244 2h), (244+2H +3R), (24+ H), (24+ H +3R),
and (24+ H + 3R) bytes, respectively, where h, H, and
R represent the number of visited nodes, the number
of nodes to be visited, and the number of link states,
respectively.

User requests arrive at each node according to a
Poisson process, and the arrival rates (\) for the two
bandwidth requirements are identical. The packet ar-
rival rates for one unit and three units of bandwidth
requirements are 37 packets/sec and 110 packets/sec,
respectively. The total number of packets per flow is

Figure 3: Network topology and link propagation de-
lays in msec.

uniformly distributed in the range (1,100). The desti-
nation node for each user request is uniformly selected
over the network. The datagrams arrive at 37 pack-
ets/sec. The sizes of packets and datagrams have a
negative exponential distribution with a mean size of
512 kbytes. Real-time flows are shaped before injec-
tion into the network according to a leaky bucket fil-
ter, where the token bucket rate and the peak rate are
equal to the bandwidth requirement of the flow, and
the token bucket size and the maximum packet size are
set to 2048 kbytes.

5.2 Simulation results

We measured the efficiency of the ARS based on
the percentages of “used” states and “reserved-but-
unused” states of the resources in the network. A large
percentage of “used” states results in high through-
put, while a small percentage of “reserved-but-unused”
states decreases the path set-up times and the loads of
agents in the network.

Fig. 4 shows the percentages of resource states
as a function of the user request arrival rate A\. The
figure demonstrates two important results. (1) The
ARS achieved a high resource utilization rate. More
than 70% of the resources were used to deliver real-
time flows even when user request loads exceeded the
network’s capacity. (2) The ARS achieved a low re-
source contention rate. The percentage of “reserved-
but-unused” states (i.e., uselessly reserved resources
due to user contention) was less than 10%. No matter
how efficient the ARS may be, it is impossible to com-
pletely utilize whole resources. This is because some
unused resources always exist depending on the com-
binations of user requests. Fig. 4 also includes re-
sources permanently allocated to the agents, since the
efficiency of the ARS depends on the bandwidth allo-
cated to them.

Here, we show in detail how the ARS controlled
user requests. The user requests were divided into two
groups: “unfinished” and “finished” requests. Accord-
ing to the results of the first path set-up trial, we fur-
ther divided the group of the finished requests into
three groups: “blocked,” “failed,” and “successful” re-
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quests, where the failed request indicates that the cor-
responding f-path for the request was available at that
time, but the path establishment for the request failed.
Fig. 5 shows the average number of these four user re-
quest groups as a function of A. The important point is
that there were very few “failed” requests compared to
. the sum of the other two finished requests (i.e., blocked
and successful requests). This result indicates that the
states of all f-paths in the path caches are almost cor-
rect.

6 Conclusions

In this paper, we described the ARS, which supports
QoS routing, resource reservation, and admission con-
trol mechanism based on ant-like agents. Simulation
results showed that the ARS achieves high resource
utilization and low resource contention among user re-
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quests. This efficient control of user requests derives
from the admission control mechanism; this mecha-
nism maintains the current states of all feasible paths
in each path cache by using agents that carry useful
information for updating the cache.
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